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Abstract. Temporary emigration was identified some time ago as causing potential
problems in capture–recapture studies, and in the last five years approaches have been
developed for dealing with special cases of this general problem. Temporary emigration
can be viewed more generally as involving transitions to and from an unobservable state,
and frequently the state itself is one of biological interest (e.g., ‘‘nonbreeder’’). Development
of models that permit estimation of relevant parameters in the presence of an unobservable
state requires either extra information (e.g., as supplied by Pollock’s robust design) or the
following classes of model constraints: reducing the order of Markovian transition prob-
abilities, imposing a degree of determinism on transition probabilities, removing state
specificity of survival probabilities, and imposing temporal constancy of parameters. The
objective of the work described in this paper is to investigate estimability of model pa-
rameters under a variety of models that include an unobservable state. Beginning with a
very general model and no extra information, we used numerical methods to systematically
investigate the use of ancillary information and constraints to yield models that are useful
for estimation. The result is a catalog of models for which estimation is possible. An example
analysis of sea turtle capture–recapture data under two different models showed similar
point estimates but increased precision for the model that incorporated ancillary data (the
robust design) when compared to the model with deterministic transitions only. This com-
parison and the results of our numerical investigation of model structures lead to design
suggestions for capture–recapture studies in the presence of an unobservable state.

Key words: capture–recapture models; deterministic transitions; model constraints; multi-state
models; nonbreeders; robust design; temporary emigration; unobservable state.

INTRODUCTION

It is not unusual in ecology to think of animals being
characterized by state variables that influence fitness
components (e.g., survival probabilities) and that are
dynamic over time (e.g., McNamara and Houston
1996). Potentially relevant state variables include size,
physiological condition, reproductive status (e.g.,
breeder or nonbreeder), behavioral state, and location.
The association between such state variables and de-
mographic vital rates is important to life history theory
(e.g., McNamara and Houston 1996) as well as to stage-
based population modeling (e.g., Sauer and Slade 1987,
Caswell 2001). If animals and their associated state
variables can be observed at will (with probability 1)
over time, then it is a straightforward matter to estimate
state-specific survival and transition probabilities.

For sampling at discrete periods where animals can-
not be observed at will, Arnason (1972, 1973) provided
a basic approach for estimating state-specific survival,
transition, and detection probabilities from open-model
capture–mark–recapture (CMR) data. This basic ap-
proach has been used for estimation with state variables
such as body mass (Nichols et al. 1992) and breeding
status (Nichols et al. 1994, Cam et al. 1998), as well

Manuscript received 26 July 2001; revised 15 April 2002;
accepted 29 April 2002.

1 E-mail: William Kendall@usgs.gov

as for studies of animal movement among multiple lo-
cations (Hestbeck et al. 1991, Schwarz et al. 1993,
Brownie et al. 1993, Spendelow et al. 1995). The ap-
proach of Arnason (1972, 1973), and most of the cited
applications, treats state transitions as a first-order Mar-
kov process, where the probability that an animal is
alive and in state s at time t 1 1 depends on the state
of the animal at time t. Brownie et al. (1993) presented
a ‘‘memory model’’ that allows the transition proba-
bility between t and t 1 1 to depend on state of the
animal at times t and t 2 1.

An assumption underlying these standard, multi-
state modeling approaches is that whatever state an
animal is in at a given sampling period, there is a non-
negligible probability that it will be observed; i.e., the
animal might not be observed, but it can be. When the
animal is not observed, these multi-state models ac-
count for the probabilities that it is in each of the pos-
sible states. Under these models, transition to a state
outside of the set of observable states is assumed to
be permanent and is confounded with mortality.

Transition to an unobservable state and then back to
an observable state is a possibility in some sampling
situations and is generally referred to as temporary
emigration in the CMR literature (e.g., Seber 1982,
Kendall et al. 1997, Kendall 1999). Methods for esti-
mating movement to and from an unobservable state
include several ecological interpretations of an unob-
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servable state. Kendall et al. (1997) considered small-
mammal studies in which, in one case, the distribution
of traps did not envelope the range of all animals in
the population, so an animal temporarily located out-
side the sampled area was in an unobservable state. In
the other small-mammal example of Kendall et al.
(1997), some animals were in torpor (the unobservable
state) and thus unavailable for capture. Kendall and
Nichols (1995), Schwarz and Stobo (1997), and Ken-
dall and Bjorkland (2001) treated the cases of Snow
Geese (Anser caerulescens), grey seals (Halichoerus
grypus), and hawksbill sea turtles (Eretmochelys im-
bricata), respectively, where breeders can be captured
and observed, but where all animals of breeding age
do not breed every year (unobservable state is ‘‘non-
breeder’’). One can also envision the case of a meta-
population in which entire patches, breeding colonies,
etc. are inaccessible to sampling or are unknown; thus,
animals in these locations are unobservable. These
sampling situations are very general in the sense that
transition probabilities to and from the unobservable
state are fully stochastic. In each case, Pollock’s (1982)
robust design provides the necessary information to
estimate transitions, assumed to be from a first-order
Markov process.

Methods using open-population modeling without
the robust design have also been developed recently
for estimating temporary emigration in situations in
which transitions to or from the unobservable state are
partially deterministic. The age-specific breeding mod-
els of Clobert et al. (1994; also see Williams et al.
2002, Spendelow et al. 2002; J.-D. Lebreton, J. E.
Hines, R. Pradel, J. D. Nichols, and J. A. Spendelow,
unpublished manuscript) consider the problem of sam-
pling breeders only (young nonbreeders are unobserv-
able). These models permit estimation of age-specific
probabilities of transition from nonbreeder to breeder
only because they specify an age at which that prob-
ability is assumed to be 1.0 (all animals are assumed
to begin breeding by a certain age) as well as an age
before which that probability is assumed to be 0 (breed-
ing is not possible before a certain age), and because
they assume that the breeder to nonbreeder transition
probability is 0. Because of these deterministic tran-
sitions, it is possible to estimate probabilities of tran-
sition from nonbreeder to breeder for specified ages in
the absence of the robust design. Related approaches
of Pradel et al. (1997) and Schwarz and Arnason (2000)
also permit estimation of age-specific breeding prob-
abilities in the case in which breeder to nonbreeder
transitions are not possible. Fujiwara and Caswell
(2002) consider a situation similar to that investigated
by Clobert et al. (1994) and Williams et al. (2002), but
relax the assumption that all animals must breed by a
certain age. Fujiwara and Caswell (2002) also consider
the situation in which nonbreeders are unobservable,
and in which a breeder in one year cannot breed in the
next year (Kendall and Bjorkland 2001 use the robust

design for this case), or possibly in the next two years.
Fujiwara and Caswell (2002) discovered that, in some
cases, transitions to and from these unobservable states
can be estimated without the robust design when pa-
rameters are set constant across time and when survival
parameters of some states are set equal.

In this paper, we consider the general problem of
estimation for single-age models with an unobservable
state. We begin with a model with an unobservable
state that is more general than any of those just con-
sidered, but whose special cases intersect with these
published methods. Estimation is not possible under
this general model with standard, open-model CMR
data. We then look for special cases of this intractable
model that are both biologically realistic and whose
parameters are estimable. Specifically, we consider
four approaches used by previous workers (Clobert et
al. 1994, Kendall et al. 1997, Fujiwara and Caswell
2002) to obtain estimates under such models. One ap-
proach, the robust design, relies on ancillary data to
estimate detection probabilities for observable states.
The other three approaches all involve imposition of
constraints on the general model structure: determin-
istic transitions, equal survival probabilities for some
states, and temporal constancy of parameters. For each
special case considered, we are interested in whether
the parameters are fully estimable (with the possible
exception of the usual confounding of parameters for
the last time period). We present biological examples
for key models that can provide estimators, focusing
on cases in which breeders are observable and non-
breeders are not.

MODEL ASSESSMENT

General model

We begin with a multinomial model that is too gen-
eral (i.e., has too many parameters) to be directly useful
for estimation. The model contains two states, one ob-
servable (denoted as O) and one unobservable (U). We
consider movement to be a special case of a second-
order Markov process. The probability that an animal
that survives to time t 1 1 is in the observable state
at that time depends on whether or not it was in the
observable state at time t ( ). If it was not observableOOct

at t, then the probability it is observable at t 1 1 de-
pends on whether it was observable at t 2 1 ( ) orUOct

not ( ).UO9ct

We model survival as state dependent, where the
probability of survival from time t to t 1 1 depends
on whether the animal was in the observable state at
time t ( ) or not ( ). The probability that an animalO US St t

is detected at time t, given that it is observable, is
simply modeled as a function of time ( ). Using mod-p*t
el notation similar to that of Lebreton et al. (1992), we
designate this model as ( , , , , , ). WeOO UO UO9 O Uc c c S S p*t t t t t t

illustrate the structure of this model with examples of
expected cell frequencies for a four-period study, based
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on releasing Rt animals in the observable state at each
time and one detection period per time period of in-
terest:

O OOE(m z R ) 5 R S c p*12 1 1 1 1 2

O OO O OOE(m z R ) 5 R S [c (1 2 p*)S c13 1 1 1 1 2 2 2

OO U UO1 (1 2 c )S c ]p*1 2 2 3

O OO O OO O OOE(m z R ) 5 R S [c (1 2 p*)S c (1 2 p*)S c14 1 1 1 1 2 2 2 3 3 3

OO O OO U UO1 c (1 2 p*)S (1 2 c )S c1 2 2 2 3 3

OO U UO O OO1 (1 2 c )S c (1 2 p*)S c1 2 2 3 3 3

OO U UO U UO91 (1 2 c )S (1 2 c )S c ]p*1 2 2 3 3 4

O OOE(m z R ) 5 R S c p*23 1 2 2 2 3

O OO O OOE(m z R ) 5 R S [c (1 2 p*)S c24 2 2 2 2 3 3 3

OO U UO1 (1 2 c )S c ]p*2 3 3 4

O OOE(m z R ) 5 R S c p*34 3 3 3 3 4

where mth is the number of the Rt animals released at
time t that are next detected at time h. Note that the
superscript O is omitted from the Rt and mth statistics
because animals must be in this state to be detected.
Using the expression for E(m14 zR1) as an example, each
term within brackets represents a different pattern of
observability (i.e., availability for detection) between
being released at time 1 and next detected at time 4.
The patterns for each of the four terms are: observable
at times 2 and 3, observable at time 2 but not time 3,
unobservable at time 2 but observable at time 3, and
unobservable at times 2 and 3, respectively.

Special cases

We consider special cases of this model that can be
derived by imposing constraints that partially or com-
pletely ignore the Markovian structure. To make move-
ment first-order Markovian, we set 5 . To re-UO UO9c ct t

move the state-dependent structure completely, we set
5 5 for movement or 5 for survival.OO UO UO9 O Uc c c S St t t t t

We also consider models in which any of these param-
eters could be constant across time, denoted by using
‘‘.’’ to replace the subscript ‘‘t’’. Finally, based on work
by Kendall and Bjorkland (2001) and Fujiwara and
Caswell (2002), we included cases in which transitions
are partially deterministic, e.g., where breeders in year
t become obligate nonbreeders in year t 1 1 (i.e.,

5 1) or in both years t 1 1 and t 1 2.OUct

For detection probability , we consider scenariosp*t
where these nuisance parameters are estimated from
the standard data available for CMR models of open
populations; i.e., one observation period per time pe-
riod of interest. We also consider the case where these
detection probabilities are estimated using extra infor-
mation. In this regard, we focus on the extra infor-
mation provided by Pollock’s robust design (Pollock
1982, Pollock et al. 1990), where there are multiple

observation periods per time period of interest. In this
case, we assume that state transitions occur between
the last observation period in time period t and the first
observation period in t 1 1 (immediately before time
period t 1 1 if ± ).O US St t

Methods

For each model, we used the analytic-numeric meth-
od described by Burnham et al. (1987; see also Ca-
rothers 1973, Nichols et al. 1981) to approximate the
expected value of each estimator, and thus to determine
if the parameters are estimable. Expected cell frequen-
cies for the mth statistics under the appropriate multi-
nomial model were computed based on known param-
eter values and specified Rt. Those frequencies were
then treated as data and input to program SURVIV
(White 1983), parameterized with the model of interest
(a model at least as general as that used to generate
the data). For relatively large Rt, the conditional max-
imum likelihood estimates and standard errors pro-
duced represent the approximate expected values of the
estimators and their standard errors. Models without
estimability problems were conservatively identified
when all estimators were unbiased to the fifth decimal
place and had coefficients of variation ,100%. For
each case, we considered six or seven time periods,
and computed expected cell frequencies based on Rt 5
500 animals per time period. We generated data based
on some combination of the following sets of parameter
values: [ 0.60, [ 0.70, [ 0.81; [OO UO UO9 OOc c c ci i i i

0, [ 0.70, [ 0.81; 5 [ 0, [UO UO9 OO UO UO9c c c c ci i i i i

0.70; [ 0.70, 5 [ 0.55; [ 0, 5OO UO UO9 OO UOc c c c ci i i i i

[ 0.70; [ 0.75, [ 0.85; 5 [ 0.80;UO9 O U O Uc S S S Si i i i i

5 0.64. We do not lose any generality in assessingp*t
models with time-specific parameters by choosing val-
ues that are equal over time. For the purposes of this
exercise, to consider known is equivalent to assum-p*t
ing that this parameter is estimated from a source of
data other than one observation period per time period
(e.g., the robust design). The SURVIV code used in
these exercises, as well as documentation on running
it, can be found online.2

Results

Results of this analytic-numeric exercise are sum-
marized for both second-order (Table 1) and first-order
(Table 2) Markovian transition probabilities. In addi-
tion to the general case of stochastic movement, we
include cases of partial determinism, motivated by ex-
amples in which breeders become obligate nonbreeders
for one or two years. In the tables, a ‘‘Y’’ indicates
that all parameters were estimable, with the possible
exception of some confounding in the last period of
the study, a phenomenon common to most open-pop-
ulation CMR models with time-specific parameters
(e.g., see Lebreton et al. 1992).

2 URL: ^www.mbr-pwrc.usgs.gov/software/unobservable.html&
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TABLE 1. Estimability of parameters using capture–recapture models with second-order Mar-
kovian emigration and state-dependent survival, when there is one observable and one un-
observable state.

Model

Models by parameter type

Transition Survival Detection

Estimability by case†

General

1-yr
obligate

nonbreeder‡

2-yr
obligate

nonbreeder§

1 c , c , c 9OO UO UO
t t t S , SO U

t t p*t
2
3
4
5
6
7
8

S , SO U. .

S 5 SO U
t t

p*.
known\

p*t
p*.

known
p*t
p*.

Y¶

Y

Y
9 known Y Y Y

10
11
12

S 5 SO U. . p*t
p*.

known
††
Y

Y
Y

Y
Y
Y

13 c , c , c 9OO UO UO. . . S , SO U
t t p*t

14
15
16
17

S , SO U. .

p*.
known

p*t
p*.

Y

18
19
20
21
22
23
24

S 5 SO U
t t

S 5 SO U. .

known
p*t
p*.

known
p*t
p*.

known

††
Y
††
††
Y

Y
Y
Y
Y

Y

Y
Y
Y
Y
Y

† Y indicates that all parameters are estimable with the usual possible exception of con-
founding of some parameters in the last period of a study.

‡ Implies c [ 0.OO
t

§ Implies c 5 c [ 0.OO UO
t t

\ Implies that detection probability can be estimated from another source of information,
such as multiple secondary sampling periods within each primary time period (i.e., Pollock’s
[1982] robust design).

¶ Generally does not work, with the exception of some special cases, for example, (S , S )O U.t

and (S , S ).O U. t

†† Unbiased, but CV . 100% for at least some parameters.

No partial determinism in transitions.—Parameters
are only fully estimable in this case when detection
probability is known from other sources of information.
If such extra information is available, as when data are
collected under the robust design, and if survival rate
is the same for those in the observable and unobserv-
able states, then these survival rates and second-order
Markovian transition probabilities can be estimated.
The most general model where this works is ( ,OOct

, , 5 , known), which is model 9 inUO UO9 O Uc c S S p*t t t t t

Table 1. This model is a generalization of the Mar-
kovian model of Kendall et al. (1997) and Kendall and
Bjorkland (2001), represented as model 33 in Table 2,
which only allowed for first-order Markovian transi-
tions, and the model of Schwarz and Stobo (1997),
which assumed that observability is a completely ran-
dom process (i.e., 5 5 ).OO UO UO9c c ct t t

A caveat with this general case of second-order Mar-
kovian transition is that even with the relatively large
sample sizes and survival and detection probabilities
we used, the expected proportional standard error on
the transition probability estimates was large, exceed-

ing 40% for . Therefore it is not clear how usefulUOĉi

this particular model will be for estimating transition
probabilities, and this topic merits further investiga-
tion. Constraining this model to first-order Markovian
transitions, or introducing partial determinism in tran-
sition probabilities, as we will discuss, improves this
precision.

Breeders become obligate nonbreeders for one
year.—The scenario in which only breeders are ob-
servable provides a good example of the problem of
an unobservable state. In some cases, breeders in one
year will always skip breeding in the next year. Hawks-
bill sea turtles provide an example in which no female
that nests in a given year is found nesting in the fol-
lowing year (Richardson et al. 1999). In some cases,
only successful breeders forego breeding in the follow-
ing year, such as with some albatross (Diomedea and
Phoebetria spp.; Weimerskirch et al. 1987). Rothery
and Prince (1990) demonstrate potential bias in sur-
vival estimates in the face of this phenomenon when
the Cormack-Jolly-Seber (CJS) method (see Seber
1982) is used.
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TABLE 2. Estimability of parameters using capture–recapture models with first-order Mar-
kovian transitions and state-dependent survival, when there is one observable and one un-
observable state.

Model

Models by parameter type

Transition Survival Detection

Estimability by case†

General
1-yr obligate
nonbreeder‡

25 c , c 5 c 9OO UO UO
t t t S , SO U

t t p*t
26
27
28
29
30
31
32
33
34
35
36

S , SO U. .

S 5 SO U
t t

S 5 SO U. .

p*.
known§

p*t
p*.

known
p*t
p*.

known
p*t
p*.

known

††
Y\

††
Y

Y
Y¶
Y
Y
Y

37 c , c 5 c 9OO UO UO. . . S , SO U
t t p*t

38
39
40
41
42

S , SO U. .

p*.
known

p*t
p*.

known
43
44
45
46
47
48

S 5 SO U
t t

S 5 SO U. .

p*t
p*.

known
p*t
p*.

known

††
††
Y
††
††
Y

Y
Y
Y
Y
Y
Y

† Y indicates that all parameters are estimable with the usual possible exception of con-
founding of some parameters in the last period of a study.

‡ Implies c [ 0.OO
t

§ Implies that information on detection probability is available from another source, such as
multiple secondary sampling periods within each primary time period.

\ Model described in Kendall et al. (1997).
¶ Model used in Kendall and Bjorkland (2001).
†† Unbiased, but CV . 100% for at least some parameters.

What can be done with respect to estimating de-
mographic parameters in this special case? As indicated
in Table 1, when transitions are second-order Markov-
ian, the robust design or some other source of infor-
mation on detection probabilities is generally required.
Exceptions include models 11, 22, and 23, where sur-
vival probabilities and either detection or transition
probabilities must be constant across time. In addition,
survival rates must be identical for animals in the ob-
servable and unobservable states. The need for the ro-
bust design does not present logistical problems for
nesting sea turtles. Many nesting beach studies consist
of several sampling occasions within a breeding season,
and due to re-nesting, there is ample opportunity to
detect a given female in more than one sampling period
per season.

To our knowledge, most albatross banding studies
have not been conducted using the robust design, al-
though it seems to us that multiple sightings of an
individual per season would be feasible for a bird
whose breeding cycle exceeds 200 d in many cases
(Weimerskirch et al. 1987). Another possible sampling
scenario that would permit estimation under this gen-
eral model is based on the assumption that detection

probability of breeders during the breeding season is
1.0. We have found that this assumption has been made
frequently and then disproven when the right kind of
information became available. Kendall and Bjorkland
(2001) found this assumption to be nearly true for a
nesting population of hawksbill sea turtles, based on
robust design data, but the availability of this type of
data made the assumption unnecessary. Given how ac-
cessible albatross are to capture, this assumption might
be tenable for smaller breeding populations (Weimer-
skirch et al. 1987). In that case, one could model breed-
ing probability as a second-order Markov process.

For first-order Markovian transition probabilities
where observable animals become obligate unobserv-
able animals for one time period ( 5 1), the numberOUct

of possibilities for estimation increases (Table 2). For
some models where survival rate is the same for ob-
servable and unobservable animals, detection proba-
bility can be estimated directly and does not need to
be known either from the robust design or by assump-
tion. Specifically, one sampling occasion per time pe-
riod is sufficient if either detection probability or sur-
vival rate is assumed constant across time (models
[ 5 0, 5 , 5 , ] and [ 5 0,OO UO UO9 O U OOc c c S S p*. ct t t t t t
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TABLE 3. Comparison of estimates and their precision for
two approaches (robust design and pooling captures within
a year) to estimating survival and breeding probabilities
for a capture–recapture study of adult female hawksbill sea
turtles (Eretmochelys imbricata) on Long Island, Antigua,
1987–1996.

Parameter

Estimate (1 SE)

Robust design Pooled within year

S.
cUO

89

cUO
90

cUO
91

cUO
92

cUO
93

cUO
94

cUO
95

cUO
96

0.95 (0.013)
0.80 (0.100)
0.40 (0.082)
0.60 (0.075)
0.68 (0.086)
0.49 (0.083)
0.46 (0.079)
0.61 (0.089)
0.34 (0.079)

0.94 (0.015)
0.80 (0.161)
0.40 (0.172)
0.58 (0.140)
0.66 (0.166)
0.49 (0.193)
0.45 (0.172)
0.59 (0.212)
0.34 (0.092)

5 , 5 , ], respectively, in Table 2).UO UO9 O Uc c S. S. p*t t t

Fujiwara and Caswell (2002) noted this possibility and
applied it to a specific case.

This is certainly a great advantage when these con-
ditions are met. It removes the bias that is introduced
in estimates for all parameters under a model based on
one sample per time period (i.e., modified CJS type
models) when transitions to/from an unobservable state
are not completely random (Kendall et al. 1997). How-
ever we still recommend finding ways to employ the
robust design, because it requires fewer assumptions
(e.g., it allows full time dependence in parameters) and
uses information more efficiently. In addition, at least
five time periods are required in the absence of ancil-
lary information on , in order to use these models.p*t
For fewer time periods, the number of parameters ex-
ceeds the number of multinomial cells (i.e., sufficient
statistics) and estimation is not possible.

To illustrate the advantage of using the robust design,
we reanalyzed the hawksbill sea turtle data that were
analyzed originally using the robust design in Kendall
and Bjorkland (2001). Briefly, these data are from an
ongoing nesting study on Long Island, a small island
several kilometers offshore of Antigua, in the eastern
Caribbean. Observers search the beach for signs of fe-
males that have come out of the surf to lay a clutch of
eggs. They wait until the female is on the nest and then
inspect her for a mark (tag or a notch on her shell) that
uniquely identifies her. If there is no mark, they apply
a tag to the front flipper and notch her shell. Observers
are out every night from mid-June to mid-November
(Richardson et al. 1999). Kendall and Bjorkland (2001)
broke this sampling effort into half-month intervals and
analyzed the data for 1987–1996 under model ( 5OOct

0, 5 , 5 , known), the most parsi-UO UO9 O Uc c S. S. p*.t t

monious based on AICc (Burnham and Anderson 1998).
We pooled these detailed capture histories into histories
that simply recorded whether or not a given female was
seen in year t. For direct comparison against the robust
design analysis, we used model ( 5 0, 5 ,OO UO UO9c c ct t t

5 , ).O US. S. p*.

The results of estimation under both approaches are
shown in Table 3. Point estimates are almost identical
under the two approaches, which is not surprising. The
standard errors for survival estimates are also similar,
but the standard errors for breeding probability esti-
mates are approximately doubled when within-year
capture information is ignored. The pattern of the re-
sults is consistent with that of Kendall et al. (1995),
who showed that using the robust design in lieu of the
Jolly-Seber method improved precision in estimates of
detection probability (and hence abundance) consid-
erably, but had little effect on the precision of survival
rate estimates. Because transitions to and from the un-
observable state are tied up statistically with detection
probability (Kendall et al. 1997), a greater improve-
ment in the precision of breeding probability estimates
vs. survival probability estimates could be expected.
However, Kendall and Bjorkland (2001) also estimated
that ø 1, with capture probabilities for individualp*.
sampling occasions on the order of 0.90. Because one
might expect a priori that the extra information pro-
vided by the robust design is not as great when detec-
tion probability is very high, the difference in precision
indicated in Table 3 is especially noteworthy.

Breeders become obligate nonbreeders for two
years.—There are some situations in which it is rea-
sonable to assume that an observable animal will be-
come obligate unobservable for two time periods there-
after. Fujiwara and Caswell (2002) discuss this case for
right whale (Eubaleaena spp.) populations.

As in the other cases that we have considered, em-
ploying the robust design and assuming that survival
rates are the same for the observable and unobservable
states, all parameters are estimable (model 9 in Table
1). Fujiwara and Caswell (2002) made the interesting
and useful discovery that transition/survival and de-
tection probabilities can be estimated from one sample
per year (i.e., no robust design or assumption of [p*t
1), in their case assuming that all parameters are con-
stant across time. We have found that time restrictions
can be relaxed somewhat, requiring only that detection
probability or survival probability be constant across
time (models 8 or 10 in Table 1). Even more note-
worthy, if the robust design is used, the extra deter-
minism in this case allows one to estimate separate
survival rates for those in the observable and unob-
servable states, assuming that either transition proba-
bilities or survival rates are equal across time (models
6 and 15 in Table 1). We further investigated the case
of model ( 5 5 0, , , , known) andOO UO UO9 O Uc c c S S p*t t t t t t

found that it did not work in general, but did for certain
cases where [ or [ . Where these specialO O U US S. S S.t t

cases seem reasonable, estimability could be investi-
gated further.

Completely random transitions.—We also evaluated
the case in which observability is a completely random
process, with no Markovian structure. Burnham (1993)
showed that this general case results in total confound-
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ing of observability and detection probability when
there is only one sampling occasion per time period.
Kendall et al. (1997) used the robust design to resolve
the confounding when survival rate is the same for
observable and unobservable animals (model 5OOct

5 , 5 , known). We found no modelUO UO9 O Uc c S S p*t t t t t

with state-specific survival rate that permitted esti-
mation. When survival rates are not state specific, they
can be estimated under the CJS method, but if transi-
tions are of interest, then the robust design or [ 1p*t
is required.

DISCUSSION

We have provided a general framework within which
to consider the phenomenon of temporary emigration,
modeled as transitions between an observable and un-
observable state. Motivated by cases in which species
skip years of breeding, we started with a model that
includes constrained second-order Markovian transi-
tions, a state-dependent survival process, and time-de-
pendent detection probabilities, but that contains too
many confounded parameters to be useful for estima-
tion. However, we arrived at models that are useful for
estimation by either (1) imposing time constraints, (2)
reducing the order of the state-dependent nature of tran-
sition or survival processes, (3) introducing partial de-
terminism to the transition process, or (4) deriving es-
timates of detection probability from another source
such as Pollock’s robust design. Although a subset of
these cases has been considered before by Kendall and
Nichols (1995), Kendall et al. (1997), Schwarz and
Stobo (1997), and Fujiwara and Caswell (2002), these
cases had not been linked previously by a single con-
ceptual framework. Within this framework, we have
explored the interesting discovery by Fujiwara and
Caswell (2002) that transitions to and from an unob-
servable state sometimes can be accounted for under
a classic open-population CMR design (i.e., one sam-
pling period per time period of interest). Specifically,
we identified cases in which this approach can be ex-
ploited, and compared results with those based on the
robust design.

We have discovered that there is more than one rea-
sonable model where parameters can be estimated with-
out the robust design, as long as there is some partial
determinism in transition probabilities. However, as in-
dicated in Tables 1 and 2, when the robust design is
employed (or when one can reliably assume [ 1.0),p*t
far less restrictive assumptions are required. Under the
robust design, partial determinism in transition prob-
abilities is not required for first-order or, to some extent,
second-order Markovian transitions, and time con-
straints are either not required or are less restrictive
than with one sample per time period.

In addition, estimates of survival probability were
often well behaved (small bias with reasonable preci-
sion) when 5 , even for models where other pa-U OS Si i

rameters were not estimable. However, we do not rec-

ommend relying on this robustness without further re-
search, using a range of parameter values and sample
sizes. Simulation should be used in this case.

Perhaps the most interesting discovery is the case of
the following models:

OO UO UO9 O U(c 5 c 5 0, c , S. , S. , p* known)t t t t

OO UO UO9 O U(c 5 c 5 0, c. , S , S , p* known)t t t t t

where survival rate depends on which state the animal
occupies. The general assumption of equal survival
rates for observable and unobservable animals is a po-
tentially very restrictive one, a consequence of having
an unobservable state (i.e., unobservable animals are
not released and therefore their survival cannot be di-
rectly associated with that state). W. L. Kendall and C.
S. Jennelle (unpublished data) found several scenarios
in which estimation is robust to violation of this as-
sumption, but nevertheless, the discovery of cases in
which the assumption is unnecessary should prove use-
ful.

The use of deterministic transitions to simplify mod-
eling and permit estimation of quantities that would
not otherwise be estimable is not unique to the issue
of temporary emigration. For example, age is a dy-
namic state variable, but it is characterized by deter-
ministic transitions in the usual case in which the in-
terval between sampling periods corresponds to the
time period required to make the transition to the next
age class. Thus, an animal of age v in year i is known
to be of age v 1 1 in year i 1 1. Because of this
determinism, the probabilities corresponding to the mij

statistics under the multiple-age models of Pollock
(1981) and Loery et al. (1987) can all be written as
products of parameters, with no sums of probabilities
representing multiple paths (multiple possible states
when the individual was not observed). Thus, multiple-
age models are much simpler in many ways than fully
stochastic multi-state models. We have not incorpo-
rated age into the models that we have considered here,
but anticipate that our conclusions would also apply to
age-dependent versions.

We have discussed exploiting extra information on
detection probability through the robust design. Other
types of ancillary data can be used to supplement CMR
data and reduce or eliminate confounding. For example,
Powell et al. (2000) used location information from
radio telemetry data to directly estimate movement of
Wood Thrushes (Hylocichla mustelina) to an area out-
side that covered by their CMR study, thus permitting
the CMR data to contribute information useful in es-
timating survival. Burnham (1993; also see Szymczak
and Rexstad 1991) used band recoveries and CMR data
in a single joint analysis. Under the assumptions that
waterfowl are never unobservable with respect to the
recovery process (i.e., bands from dead birds always
have a chance of recovery), and that emigration from
a banding location is permanent, Burnham (1993) es-
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timated survival and emigration simultaneously. Bark-
er (1997) extended Burnham’s work to assume that
incidental observations are possible for any animal re-
gardless of its location, and Barker (1995) removed the
assumption that emigration is permanent (with con-
straints over time). Lindberg et al. (2001) combined
Burnham’s model with the robust design to estimate
temporary movement to one type of unobservable state
(nonbreeder still associated with breeding area) and
permanent movement to another unobservable state
(failed fidelity to a breeding area) for Canvasback
Ducks (Aythya valisineria).

Our assessment here has been primarily theoretical
in the sense that we were interested in what parameters
could be estimated under various model structures and
types of available data. Even for the models where we
found no problems with estimability, small sample size
and sparseness (e.g., empty cells) could still cause es-
timability or precision problems. Methods such as
those of Catchpole and Morgan (1997) could be used
to assess estimability in the face of both model structure
and sparseness problems.

As with any ecological study, the investigator should
use prior notions of parameter values to simulate the
expected demographic and capture process, to deter-
mine the design and sampling effort necessary to min-
imize bias and achieve desired precision. Using pro-
gram SURVIV (White 1983), estimability problems,
due either to model structure or data sparseness, usually
manifest themselves through singularity of the vari-
ance–covariance matrix, or at least very large variances
(i.e., proportional standard errors of well over 100%).
When, . , precision of tends to be espe-OU UO UOc c ci i i

cially poor because animals are not available for de-
tection very often.

Despite the fact that, with some assumptions, tran-
sitions to and from an unobservable state are a tractable
estimation problem, it is still preferable to sample all
potential locations of marked animals. This would per-
mit the use of multi-state models (e.g., Hestbeck et al.
1991, Spendelow et al. 1995), which allow for state-
specific survival rates and both first- and second-order
Markovian transitions (Brownie et al. 1993). When
there are multiple observable states and at least one
unobservable state, the estimation problem becomes
even more complicated, but not necessarily intractable.

Where transitions to an unobservable state are in-
evitable, we recommend exploiting partial determinism
where possible, but in general strongly recommend the
use of Pollock’s (1982) robust design in setting up a
study, employing multiple well-defined secondary sam-
pling periods for each primary time period of interest.
The advantages of this design are numerous and include
some beyond the scope of this paper (e.g., Pollock
1982, Pollock et al. 1990, Kendall and Pollock 1992,
Kendall et al. 1995).

Software exists for computing estimates under most
of the tractable models discussed here. Programs

(available online) that can be useful include RDSUR-
VIV, ORDSURV, TURTSURV, and MSSURVIV,3 and
MARK.4 MSSURVIV and its counterpart in MARK can
be useful for the case of partially deterministic tran-
sitions without robust design data.
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